Delivering meaningful AI

Wim Vos, PhD MSc
ERS digital health summit - 04/06/2021
The focus of today

AI for decision support systems and patient management
It is hard for MDs to cope with today’s health management complexity...

There are limitations in a human MD....

- Extensive knowledge to retain
- Multiple and diverse type of data to consider
- Expensive operations
- Tiredness and fatigue
- Time-consuming procedures

Image source: vectorstock.com
...but AI can come to the rescue

- Based on global knowledge and updates
- Able to integrate and consider multiple and diverse types of data
- Cheaper and cost-effective
- Tireless and restless
- Faster and efficient

Image source: vectorstock.com
Is AI really the solution? What challenges does it pose?

Key AI considerations

- Trust in a black box
- Access data in compliance with GDPR
- Does data always hold the answer?
Is AI really the solution? What challenges does it pose?

Key AI considerations

- Trust in a black box
- Access data in compliance with GDPR
- Does data always hold the answer?
What is going on in a pigeon brain?

Studies have shown that pigeons can serve as promising surrogate observers of medical images to distinguish benign from malignant human breast histopathology and to be capable of detecting cancer-relevant microcalcifications on mammogram images\(^1\).

Deep learning
Extremely effective \textit{but}…

- It requires \textbf{a lot} of information
- works as a \textbf{black box}:
 1. no real-world interpretation
 2. only good for the purpose it was developed for

Question: does it need to be a **black box**?

PERCEPTION

Inputs and operations **not visible** to the user.

Largely **self-directed** process.

Opaque implementation.

REALITY

Handcrafted features extraction.

Explainable internal working.

Transparent algorithm.
Answer: not necessarily
Is AI really the solution? What challenges does it pose?

Key AI considerations

- Trust in a black box
- Access data in compliance with GDPR
- Does data always hold the answer?
What about data access and ensuring privacy

American and Chinese companies have established their frontline positions in AI technology. But what is the impact on data protection? And what is the EU’s stance on individual rights and civil liberties?

The General Data Protection Regulation (EU) 2016/679 (GDPR) is a regulation in EU law on data protection and privacy.

The aim is to give individuals control over their personal data.

The patient has right to be informed, to access his data, to restrict and object to processing, but also to rectification and erasure.

The European Commission wants the EU to become a safe space for AI innovation.

Only high-risk AI systems (among them, AI-powered healthcare) that have gone through quality management and conformity assessment procedures will be allowed in the EU.

Some requirements the draft lays out include the need for data sets to be high quality, have human oversight and transparency, as well as be “robust”.

GDPR

EU’s AI Law
Is AI really the solution? What challenges does it pose?

Key AI considerations:

- Trust in a black box
- Access data in compliance with GDPR
- Does data always hold the answer?
The standard AI approach working with large dataset

Standard AI approach

- Collect heterogenous data
- Develop and validate model
- Release model

Drawbacks

- More difficult to capture signal
- Not clear what are the working conditions for the final model
- Requires large data sets
Data quantity vs quality

Finding the right balanced between **quantity** and **quality** is the key for successful AI.

- AI does **not** necessarily require big dataset.
- Simulations show how the analysis of a **smaller cohort** can lead to better results, overcoming the noise threshold, which simulations with bigger cohort could not.
- **Quality** over **quantity**.

Delivering meaningful AI - ERS digital health summit 2021
The alternative approach of smaller and higher quality datasets

Alternative Approach

Select high quality curated data

Develop and validate model

Test model with data variability

Advantages

- Develop model by understanding underlying reality
- Clearly define conditions for model to work
Question: *how does AI help in clinical decision making?*

- It is not about replacing doctors. It is about **supporting** and **enhancing** their performance.

- **EFFICIENCY:** Speeding up simple but time-consuming operations

- **SAFETY:** Reducing error probability

- **EFFICACY:** Going beyond what can meet the eye
Using the human expertise in the most efficient way possible

Speeding up simple but time-consuming operations

AI can help radiologists by **rapidly analyze images and data registries**, supporting them in several tasks such as:

- Segmentation of the organs
- Segmentation of the abnormalities
- Differential diagnosis
- Image assessment and volumetric measurements (RECIST evaluation)

Fast, accurate, efficient

Automatic segmentation of abnormalities
The interpretation of pulmonary function tests (PFTs) to diagnose respiratory diseases is built on expert opinion that relies on the recognition of patterns and the clinical context for detection of specific diseases.

There is poor accuracy and substantial disagreement between pulmonologists when interpreting complex pulmonary function data.

Automating interpretation with AI provides a powerful decision support tool in clinical practice.

Improving the efficacy of medical staff

Going beyond what can meet the eye

Human eyes are limited

There is much information beyond what can meet the eyes

Quantitative Image Analysis

Quantitative biological information embedded in standard medical imaging
How do we see the future?

Black box deep learning

Automatic tasks that do not require interpretation
Can be easily checked by a human or any other method

Understandable and smart machine learning

Understanding scientific questions
Support clinical decision making but not replacing physician
AI for Decision Support Systems and patient Management in COVID-19

The DRAGON project aims to use artificial intelligence (AI) and machine learning to develop a decision support system capable of delivering a more precise coronavirus diagnosis and more accurate predictions of patient outcomes. Underpinning all of this will be a federated machine learning system that will allow the use of data from a range of international sources while complying with the EU’s General Data Protection Regulation (GDPR).

- Goal: rapid and secure AI imaging-based diagnosis, stratification, follow-up, and preparedness for coronavirus pandemics.
- Lead institution: Radiomics, Belgium.
- 18 partners: high-tech SMEs, academic research institutes, biotech and pharma partners, affiliated patient-centred organisations and professional societies from Belgium, Italy, the Netherlands, Switzerland and the UK.
- Funding: Innovative Medicines Initiative (IMI), joint of the DG Research of the European Commission.
MOVING BEYOND FLATTENING THE CURVE

AI driven approaches for elevating health system response capacity

The RapID and SecuRe AI enhanced Diagnosis, Precision Medicine and Patient Empowerment Centered Decision Support System for Coronavirus Pandemics (DRAGON)

FACTORS LIMITING RESPONSE CAPACITY

- Inensitive diagnostic tests
- Limited prognosticators
- Lack of understanding
- Limited human resources
- Lack of effective therapies
- Data in silos

VIRAL PANDEMIC PHASES

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>Manage Resources</td>
</tr>
<tr>
<td>Phase II</td>
<td>Monitoring</td>
</tr>
<tr>
<td>Phase III</td>
<td>Prosecution</td>
</tr>
<tr>
<td>Phase IV</td>
<td>Preparing</td>
</tr>
</tbody>
</table>

PRECISION MEDICINE
- Enhanced Imaging
- Decision Support
- Pathway Biomarkers
- Scalable Diagnostics and Prognostics
- Electronic OSS and Stakeholder Community
- Multifactorial Analysis

04/06/2021 | Delivering meaningful AI - ERS digital health summit 2021
CDistriM: towards shared and accessible medical data

Sharing and accessing medical data is hindered by legal and ethical consideration

- A solitary medical center does not have sufficient quality data for the specific task at hand to implement high-performance AI
- Building accurate and reliable predictive models remains a challenge

Distributed learning aims to share research questions instead of privacy sensitive data

- Maintain data privacy
- No individual level data is shared (clinical, genomic, imaging, …)

It allows AI models to be trained on multiple siloed datasets without the need for patient data to leave the firewalls of each database.
Thank you for your attention